晶体振荡器(SPXO) 输出:LV-PECL, LVDS

SG3225EAN, VAN SG5032EAN/VAN SG7050EAN/VAN

●频率范围 73.5 MHz ~ 700 MHz ●电源电压 2.5 V ~ 3.3 V

使能(OE) •功能 LV-PECL, LVDS •输出

产品号码(请联系我们) SG3225EAN: X1G004251xxxx00

SG3225VAN: X1G004241xxxx00 SG5032EAN: X1G004271xxxx00 SG5032VAN: X1G004261xxxx00 SG7050EAN: X1G004291xxxx00

SG7050VAN: X1G004281xxxx00

SG3225EAN/VAN

SG5032EAN/VAN $(3.2 \times 2.5 \times 1.05 \text{ mm})$ $(5.0 \times 3.2 \times 1.0 \text{ mm})$ $(7.0 \times 5.0 \times 1.4 \text{ mm})$

SG7050EAN/VAN

实际尺寸

SG3225EAN/VAN

SG5032EAN/VAN SG7050EAN/VAN

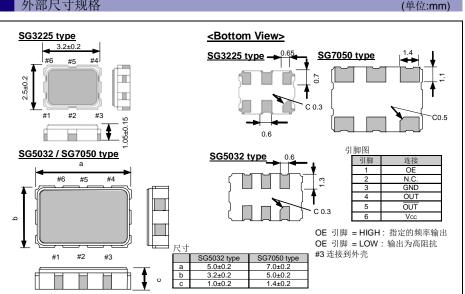
WINDSON.

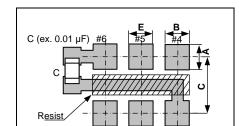
规格 (特征)

		规格说明				
项目	符号	LV-PECL	LVDS	<i>⁄</i> 2 μ-		
	打五	SG3225EAN / SG5032EAN /	SG3225VAN / SG5032VAN /		条件	
		SG7050EAN	SG7050VAN			
输出频率范围	fo	73.5MHz ~ 700 MHz		请联系我们以便获取其它可用制	顾率的相关信息	
电源电压	Vcc	K: 2.5V ~ 3.3V		Vcc=± 10%		
储存温度范围	T_stg	-40 °C ~	+125 °C	裸存		
工作温度范围	T_use	B: -20 °C ~ +70 °C,	G: -40 °C ~ +85 °C			
频率稳定度	f_tol	$J: \pm 50 \times 10^{-6}$, $E: \pm 30 \times 10^{-6}$, $C: \pm 20 \times 10^{-6}$				
功耗	Icc	65 mA Max.	30 mA Max.	OE=Vcc, L_ECL=50 Ω or L_	LVDS=100 Ω	
输出禁用电流	I_dis	20 mA		OE=GND		
占空比	SYM		- 55 %	在输出交叉点		
输出电压(LV-PECL)	Vон	Vcc-1.0 V ~ Vcc-0.8 V	_	DC 特征		
THE LEGISLAND COL	Vol	Vcc-1.78 V ~ Vcc-1.62 V	_			
输出电压(LVDS)	Vod	_	250 mV ~ 450mV	Vod1, Vod2		
	dVod	_	50 mV Max.	dVod = Vod1-Vod2	DC 特征	
	Vos	_	1.15 V ~ 1.35 V	Vos1, Vos2	DC 特征	
	dVos	_	150 mV Max.	dVos = Vos1-Vos2		
输出负载条件	L_ECL	50 Ω	_		终止于 Vcc -2.0 V	
(ECL) / (LVDS)	L_LVDS	_	100 Ω	连接到 OUT 与 OUT 之间	连接到 OUT 与 OUT 之间	
输入电压	Vih	70 % Vcc Min.		OE 终端		
相/人七/正	VIL	30 % Vcc Max.				
上升/下降时间	tr / tf	350 ps Max.	300 ps Max.	20% ~ 80% (VoH-VoL).	· Itt	
任 供 白 志 叶 l l l	4 -4-	·	•	20%~80% 微分输出 峰-峰		
振荡启动时间	t_str	3 ms Max.		在电源电压最低时,所需时间		
相位抖动	tpJ	0.6 ps Max. ^{*1}		抵消频率: 12 kHz ~ 20 MHz	2	
频率老化	f_aging	\pm 5 \times 10 ⁻⁶ / year Max.		+25 °C, 第一年, Vcc=2.5 V,	3.3 V	

产品名称 (标准显示) SG3225 E AN 156.250000MHz K J G A

(⑤⑥: CG 对应不可)


②输出(E: LV-PECL, V: LVDS) ④电源电压 ⑤频率稳定度 ⑥工作温度范围 ⑦内部识别码(A:默认) ③频率


±. J	
4)电	源电压
K	2.5 ~ 3.3 V

⑤频率稳定度		
っ	±50 × 10 ⁻⁶	
Е	±30 × 10 ⁻⁶	
C	+20 × 10 ⁻⁶	

⑥工作温度范围		
В	-20 ~ +70°C	
G	-40 ~ +85°C	

外部尺寸规格

(单位:mm)

推荐焊盘尺寸

SG3225 type SG5032 type SG7050 type A B C 0.92 1.60 1.80 0.89 4.20 2.60 2.54 1.85 5.08 0.80 0.89 1.80

#2

D

#3

为了维持稳定运行,在接近晶体产品的电源输入端处(在 Vcc-GND之间)添加一个0.01~0.1 μF的去耦电容

推进环境管理体系 符合国际标准

在环境管理体系的运行方面,使用 IS014001 国际环境标准,通过"计划-实施-检查-验证 (PDCA) 的循环来实现持续改进。公司位于日本和海外的主要制造基地已取得了 IS014001 资格认证。

ISO 14000 是国际标准化组织于 1996 年在全球化变暖, 臭氧层破坏、以及全球毁林等环境问题日益严重的背景下提出的环境管理国际标准。

追求高品质

Seiko Epson 为了向顾客提供高品质、卓越信赖性的产品、服务,迅速着手通过 ISO 9000 系列资格认证的工作,其日本和海外工厂也在通过 ISO 9001 认证。同时,也在通过大型汽车制造厂商要求规格的 ISO/TS 16949 认证。

ISO/TS16949 是一项国际标准,是在 ISO9001 的基础上增加了对汽车工业的特殊要求部分。

关于在目录内使用的记号

Pb	●无铅。
RoHS	●符合欧盟 RoHS 指令。 欧盟 RoHS 指令免检的含铅产品。 (密封玻璃、高温熔化性焊料或其他材料中包含铅。)
For Automotive	●为汽车方面的应用,如汽车多媒体、车身电子、遥控无钥门锁等。
Automotive Safety	●为汽车行驶安全方面的应用(引擎控制单元、气囊、电子稳定程序控制系统)。

注意事项

- 本材料如有变更, 恕不另行通知。量产设计时请确认最新信息。
- 未经 Seiko Epson 公司书面授权,禁止以任何形式或任何方式复制或者发布本材料中任何部分的信息内容。
- 本材料中的书面信息、应用电路、编程、使用等内容仅供参考。Seiko Epson 公司对第三方专利或版权的侵权行为不负有任何责任。本材料 未对任何专利或知识版权的许可权进行授权。
- 本材料中规格表中的数值大小通过数值线上的大小关系表示。
- 当出口此材料中描述的产品或技术时,你应该遵守相应的出口管制法律和法规,并按照这些法律和法规的要求执行。 请不要将产品(以及任何情况下提供任何的技术信息)用于开发或制造大规模杀伤性武器或其他军事用途。还要求,不要将产品提供给任何 将产品用于此类违禁用途的第三方。
- •此类产品是基于在一般电子机械内使用而设计开发的,如将产品应用于需要极高可靠性的特定用途,必须实现得到弊公司的事前许可。若 无许可弊公司将不负任何责任。
 - 1.太空设备(人造卫星、火箭等) 2.运输车辆机器控制装置(汽车、飞机、火车、船舶等) 3.用于维持生命的医疗器械
 - 4.海底中转设备 5.发电站控制机器 6.防灾防盗装置 7.交通设备 8.其他,用于与1~7具有同等可靠性的用途。

本材料中记载的品牌名称或产品名称是其所有人的商标或注册商标。